5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Система предупреждения о ракетном нападении

На что способна российская система предупреждения о ракетном нападении

Российский военный спутник «Космос-2430» 5 января 2019 года сошел с орбиты и сгорел в атмосфере над Тихим океаном. Российские военные заявили, что аппарат был сведен с орбиты в штатном режиме и все время падения находился под наблюдением Воздушно-космических войск.

Спутник входил в состав космического эшелона российской системы предупреждения о ракетном нападении, которая, по задумке конструкторов и военных, должна предупредить руководство страны о начале ядерной войны. После сообщений о сходе «Космоса-2430» с орбиты могло сложиться впечатление, что российские возможности по раннему обнаружению запусков баллистических ракет уменьшились, однако на самом деле ничего не изменилось — космический эшелон, хотя и не стал менее эффективным, все равно остается самым слабым звеном системы предупреждения о ракетном нападении.

Вспоминаем наш текст, в котором мы рассказываем об истории создания системы предупреждения о ракетном нападении и о ее современном состоянии. Эта часть материала посвящена космическому эшелону системы и его возможностям. О наземном эшелоне мы расскажем позднее.

Ядерный щит

Если не вдаваться в сложные подробности, то можно сказать, что история оружия — это взаимосвязанное развитие средств нападения и средств защиты. Вскоре после того, как было придумано копье, появился и щит; развитие огнестрельного оружия привело к созданию бронежилета. Все новые виды вооружений порождали и новые виды противодействия им, причем иногда на нетривиальную угрозу приходилось придумывать не менее нетривиальный ответ.

В 1961 году США провели испытания первой межконтинентальной баллистической ракеты Minuteman, способной поражать цели на дальности до 9,3 тысячи километров. Ракета имела разделяющуюся головную часть и летала на твердом топливе, благодаря чему была проста в обслуживании носителя и требовала меньше времени на подготовку к запуску. В результате советские военные пришли к выводу, что действующая в стране с начала 1950-х годов система противоракетной обороны с радиолокационным полем обнаружения пусков баллистических ракет практически беспомощна перед новыми американскими носителями.

Поэтому в том же 1961 году Министерство обороны СССР подготовило и ввело в действие документ о новой тактике противодействия ракетно-ядерной угрозе. В нем, в частности, был описан ответно-встречный удар, подразумевающий запуск баллистических ракет по территории противника в ответ на его пуски носителей по территории СССР, причем еще до того, как ракеты противника поразят свои цели. Как говорится, ответим, пока еще все живы.

Запуск американской баллистической ракеты Minuteman

Концепция ответно-встречного удара подразумевала организацию системы, способную на раннем этапе, то есть еще во время разгона баллистических ракет противника, предупредить советских военных о нападении. Существовавшие тогда в СССР системы обнаружения баллистических ракет были «заточены» под носители средней дальности, то есть с дальностью полета до 5,5 тысячи километров. Они могли предупредить о ракетах лишь за 10-15 минут до их прилета к цели.

Советская СПРН

В состав системы предупреждения о ракетном нападении, которая должна была следить за пусками новых американских ракет, должны были войти два эшелона: космический (первый) и наземный (второй). Первый эшелон должен был состоять из спутников, способных обнаружить запуски баллистических ракет с территории США, с которыми в то время СССР находился в состоянии холодной войны. Второй эшелон предполагалось составить из сети надгоризонтных и загоризонтных радиолокационных станций, которые бы могли подтверждать или опровергать данные первого эшелона о пусках ракет, а также сопровождать баллистические цели и выдавать частичное целеуказание системам противоракетной обороны.

Первым началось формирование наземного эшелона, параллельно Особое конструкторское бюро № 41 (ныне ЦНИИ «Комета») и Машиностроительный завод имени Лавочкина (ныне НПО имени Лавочкина) вели разработку космического эшелона.

В полноценном своем виде система предупреждения о ракетном нападении заработала в конце 1970-х годов. К 1979 году в ее состав входили четыре спутника системы «Око». Они могли видеть пуски баллистических ракет на так называемом активном участке, отслеживая инфракрасное излучение факелов работающих двигателей на фоне земли. Кроме того, работали несколько наземных новых и модернизированных радиолокационных станций — «Днестр», «Днестр-М», «Днепр». К концу 1980-х годов были введены в строй несколько дополнительных спутников системы «Око», а также новые радиолокационные станции «Дарьял», обеспечивавшие обнаружение баллистических ракет на большой дальности.

Передающая позиция Габалинской радиолокационной станции «Дарьял»

Министерство обороны России

Советские предприятия приступили к разработке новых космических аппаратов для первого эшелона, которые должны были бы обнаруживать пуски баллистических ракет не только с континентальной части США, но и с других территорий, а также с моря. Эта система получила название «Око-1», а ее развертывание началось в 1991 году.

В целом, созданная СССР система предупреждения о ракетном нападении позволяла заблаговременно оповещать военных о об угрозе ракетного нападения — она могла включать оповещение о пусках вскоре после старта ракет еще на их разгонном участке.

Известно, что эта система давала несколько ложных срабатываний. Так, в сентябре 1983 года система предупредила о множественных запусках баллистических ракет с территории США, но ее срабатывание было признано ложным. В 1985 году она также выдала предупреждение о запуске ракет, но сама же его и отменила, поскольку не получила подтверждающих данных от наземного эшелона. Наконец, в 1995 году уже российская система предупреждения сообщила о запуске одной баллистической ракеты. Это сообщение также признали ложным. Вскоре выяснилось, что она среагировала на запуск норвежского метеорологического спутника.

В настоящее время космический эшелон системы предупреждения о ракетном нападении включает в себя спутники двух систем: «Око» и Единой космической системы (ЕКС). Во многом информация о составе эшелона засекречена. Предположительно, в космосе в настоящее время находятся четыре космических аппарата на высокоэллиптических орбитах.

Концептуальная схема радиолокационной станции «Днестр»

Подслеповатое «Око»

До недавнего времени в состав системы «Око» входили три спутника, расположенные на высокоэллиптической орбите ( орбите «Молния» ). Из-за вращения вокруг Земли они не всегда могли видеть территорию США, чтобы вовремя обнаружить инфракрасное излучение работающих двигателей баллистических ракет. Поэтому до 2014 года в состав системы «Око» входил и один аппарат на геостационарной орбите — «Космос-2379». Он обеспечивал корректировку данных спутников на высокоэллиптической орбите и наблюдение в те моменты, когда они «не видели» территорию США.

В начале 2014 года «Космос-2379» перестал работать, и к середине года его сняли с боевого дежурства. Тогда на орбите остались три спутника: «Космос-2422», «Космос-2430» и «Космос-2440».

Пятого января 2019 года с орбиты сошел и сгорел в атмосфере «Космос-2430». Этот спутник был выведен на орбиту еще в 2007 году. По разным неподтвержденным данным, он перестал работать в 2012-2014 году, выработав свой ресурс, который для аппаратов такого типа составляет пять лет. Сгорание спутника в атмосфере попало в трансляцию крикетного матча между сборными Шри-Ланки и Новой Зеландии на телеканале Fox News.

После схода аппарата с орбиты возможности системы «Око» практически не изменились. Апогеи оставшихся спутников на высокоэллиптической орбите расположены над Атлантически и Тихим океанами. Предположительно, «Космос-2422» и «Космос-2440» сейчас могут работать лишь несколько часов в сутки — их ресурс почти исчерпан, поэтому большую часть времени они находятся в «спящем режиме».

Аппараты ведут наблюдение под углом к земной поверхности. Это было сделано специально, чтобы гарантированно различать факелы ракет на контрасте с атмосферой и ее границей, а также уменьшить вероятность ложного срабатывания из-за отражения солнечного излучения от Земли и облаков.

Изначально предполагалось, что в состав системы «Око» должны войти по меньшей мере четыре спутника на высокоэллиптической орбите. Это позволило бы обеспечить круглосуточное наблюдение за территорией США — каждый спутник мог бы следить за пусками ракет по шесть часов в сутки. Несколько лет возможности системы «Око» дополнялись спутниками системы «Око-1». В состав последней входили восемь аппаратов, последний из которых был запущен в 2012 году. Все они размещались на геостационарной орбите.

Читать еще:  Боевое применение "Дон-2Н" - многофункциональная РЛС

В отличие от системы «Око», аппараты «Око-1» были оснащены солнечными защитными экранами и специальными фильтрами, чтобы вести наблюдение за поверхностью земли, а также моря под практически вертикальным углом. Это позволяло обнаружить морские старты баллистических ракет подводных лодок на фоне отражений от морской поверхности и облаков. Спутники могли «видеть» инфракрасное излучение работающих ракетных двигателей даже при при относительно плотном облачном покрове.

Но из-за выработки ресурса и ряда сбоев на нескольких аппаратах система «Око-1» полностью перестала функционировать к началу 2015 года. Космические аппараты этой системы больше не выпускаются, и возобновлять их производство военные не планируют.

Недостроенная ЕКС

В середине 2000-х годов Министерство обороны России решило сделать ставку на развитие Единой космической системы, аппараты которой должны были бы полностью заменить системы «Око» и «Око-1», а также значительно расширить возможности первого эшелона системы предупреждения о ракетном нападении.

Для этого российские ЦНИИ «Комета» и РКК «Энергия» разработали новые спутники «Тундра», предназначенные для работы на эллиптических и геостационарных орбитах. Главным их отличием от аппаратов систем «Око» является способность не только обнаруживать инфракрасное излучение запущенных наземных и морских баллистических ракет, но и вычислять траекторию их полета и выдавать целеуказание наземным системам противоракетной обороны. (Спутники систем «Око» могли лишь предупредить о запусках, но определение траектории ракет ложилось на второй, наземный, эшелон).

Ионизированные следы от упавших боевых частей ракеты MinutemanIII

Помимо телескопов и систем обнаружения инфракрасного излучения, аппараты «Тундра» получили и системы боевого управления. Это означает, что эти космические аппараты можно использовать для передачи команд на начало ответного ракетного удара, грубо говоря, для приказов с «ядерного чемоданчика» (на самом деле система прохождения приказов на запуск баллистических ракет сложнее, чем обычное получение сигналов от нажатой президентом кнопки).

Известно, что к настоящему времени в космос были запущены два спутника «Тундра», получившие индексы «Космос-2510» и «Космос-2518». Они располагаются на высокоэллиптических орбитах с апогеем чуть более 39 тысяч километров. Эти аппараты, хотя официально и стоят на боевом дежурстве, полноценное предупреждение о ракетном нападении обеспечить пока не могут из-за своей малой численности. Российские военные сегодня используют их для подготовки специалистов, а также настройки наземного оборудования и отладки программного обеспечения управления и анализа данных.

Министерство обороны России планирует включить в состав Единой космической системы также спутники радиолокационной, оптико-электронной и геодезической разведки. Эти аппараты в обычное время будут использоваться для наблюдения за поверхностью Земли, разведки и картографирования, а в случае начала ядерной войны — уточнения данных, поступающих с аппаратов «Тундра», включая идентификацию баллистических целей.

Кроме того, ЕКС должна будет пополниться спутниками разведки и связи системы «Лиана», отвечающими за обнаружение и сопровождение кораблей и судов, а также передачу управляющих команд на стратегические ракетоносцы в море.

В целом, космический эшелон российской системы предупреждения о ракетном нападении сегодня практически бесполезен, поскольку не способен обеспечивать круглосуточное наблюдения за точками потенциального запуска баллистических ракет и морской поверхностью. Этот недостаток отчасти компенсируется радиолокационными станциями наземного эшелона системы, однако они не способны обеспечить действительно раннее предупреждение о ракетном нападении.

О конкретных планах развития Единой космической системы Министерство обороны России не распространяется. Последний из спутников «Тундра» был запущен в мае 2017 года. По неподтвержденным данным, военные планируют вывести на орбиту еще по меньшей мере четыре таких аппарата, однако когда именно это будет сделано, пока не известно.

Система предупреждения о ракетном нападении

Система предупреждения о ракетном нападении (СПРН) предназначена для обнаружения нападения с применением ракетного оружия до того, как ракеты достигнут своих целей. Состоит из двух эшелонов — наземные РЛС и орбитальная группировка спутников системы раннего предупреждения.

Содержание

История создания

Разработка и принятие на вооружение в конце 1950-х межконтинентальных баллистических ракет привели к необходимости создания средств обнаружения пусков таких ракет, чтобы исключить возможность внезапного нападения.

Советский Союз приступил к созданию системы предупреждения о ракетном нападении в начале 1960-х. Первые радиолокационные станции (РЛС) раннего предупреждения были развёрнуты в конце 1960-х — начале 1970-х. Основной их задачей было предоставление информации о ракетном нападении для систем противоракетной обороны, а не обеспечение возможности ответно-встречного удара. Первые РЛС фиксировали ракеты после их появления из-за местного горизонта либо, используя отражения радиоволн от ионосферы, «заглядывали» за горизонт. Но, в любом случае, предельная достижимая мощность таких станций и несовершенство технических средств обработки получаемой информации ограничивали дальность обнаружения двумя-тремя тысячами километров, что соответствовало времени оповещения 10—15 минут до прилёта.

В 1960 году в США радар AN/FPS-49 (разработка Д. К. Бартона) для системы предупреждения о ракетном нападении был принят на вооружение на Аляске и Великобритании (заменены только спустя 40 лет службы на более новые радары) [1] .

В 1972 в СССР была разработана концепция интегрированной системы предупреждения о ракетном нападении. Она включала в себя наземные надгоризонтные и загоризонтные радиолокационные станции и космические средства и была способна обеспечить реализацию ответно-встречного удара. Для обнаружения пусков МБР во время прохождения ими активного участка траектории, что обеспечило бы максимальное время предупреждения, предполагалось использовать спутники СПРН и загоризонтные РЛС. Обнаружение боевых частей ракет на поздних участках баллистической траектории предусматривалось с помощью системы надгоризонтных РЛС. Такое разделение значительно повышает надёжность системы и снижает вероятность ошибок, так как для обнаружения ракетного нападения используются разные физические принципы: регистрация инфракрасного излучения работающего двигателя стартующей МБР спутниковыми датчиками и регистрация отражённого радиосигнала с помощью РЛС.

Система предупреждения о ракетном нападении СССР

РЛС предупреждения о ракетном нападении

Работы по созданию РЛС дальнего обнаружения (ДО) начались после принятия в 1954 г. решения Правительства СССР о разработке предложений по созданию противоракетной обороны (ПРО) Москвы. Её важнейшими элементами должны были стать и РЛС ДО для обнаружения и определения с высокой точностью координат ракет противника и головных частей на расстоянии нескольких тысяч километров. В 1956 г. Постановлением ЦК КПСС и СМ СССР «О противоракетной обороне» А.Л. Минц был назначен одним из главных конструкторов РЛС ДО и в том же году в Казахстане начались исследования отражающих параметров головных частей БР, запускаемых с полигона Капустин Яр.

Строительство первых РЛС раннего предупреждения велось в 1963—1969 годах. Это были две РЛС типа «Днестр-М», размещённые в Оленегорске (Кольский полуостров) и Скрунде (Латвия). В августе 1970 система была принята на вооружение. Она была рассчитана на обнаружение баллистических ракет, запускаемых с территории США или из акваторий Норвежского и Северного морей. Основной задачей системы на данном этапе было предоставление информации о ракетном нападении для системы противоракетной обороны, разворачиваемой вокруг Москвы.

В 1967—1968, одновременно со строительством РЛС в Оленегорске и Скрунде, было начато строительство четырёх РЛС типа «Днепр» (модернизированная версия РЛС «Днестр-М»). Для строительства были выбраны узлы в Балхаше-9 (Казахстан), Мишелевке (возле Иркутска), Севастополе. Ещё одна была построена на узле в Скрунде, в дополнение к уже работающей там РЛС Днестр-М. Эти станции должны были обеспечить более широкий сектор обзора системы предупреждения, расширив его на Северную Атлантику, районы Тихого и Индийского океана.

В начале 1971 г. на базе командного пункта раннего обнаружения в Солнечногорске был создан командный пункт системы предупреждения о ракетном нападении. 15.02.1971 г. приказом министра обороны СССР отдельная дивизия противоракетного наблюдения заступила на боевое дежурство.

Разработанная в 1972 концепция системы предупреждения о ракетном нападении предусматривала интеграцию с существующими и вновь создававшимися средствами противоракетной обороны. В рамках этой программы в систему предупреждения были включены РЛС «Дунай-3» (Кубинка) и «Дунай-3У» (Чехов) системы ПРО Москвы.

Читать еще:  К300 «Бастион» - береговой ракетный комплекс

Кроме окончания строительства РЛС Днепр в Балхаше, Мишелевке, Севастополе и Скрунде было запланировано создание новой РЛС этого типа на новом узле в Мукачево (Украина). Таким образом РЛС Днепр должны были стать основой новой системы предупреждения о ракетном нападении. Первая очередь этой системы, в состав которой входили РЛС на узлах в Оленегорске, Скрунде, Балхаше-9 и Мишелевке, начала боевое дежурство 29 октября 1976. Вторая очередь, в состав которой входили РЛС на узлах в Севастополе и Мукачево, была поставлена на боевое дежурство 16 января 1979.

В начале 70-х годов прошлого века появились новые типы угроз — баллистические ракеты с разделяющимися и активно маневрирующими головными частями, а также стратегические крылатые ракеты, применяющие меры пассивного (ложные цели, РЛ-ловушки) и активного (постановка помех) противодействия. Обнаружение их также затруднялось внедрением систем снижения радиолокационной заметности (технология «Стелс»). Для соответствия новым условиям в 1971-72 годах был разработан проект новой РЛС СПРН тип «Дарьял». В 1984 была сдана госкомиссии и заступила на боевое дежурство станция этого типа в г. Печора, Республика Коми. Аналогичная станция была построена в 1987 году в Габале, Азербайджан.

Космический эшелон СПРН

В соответствии с проектом системы предупреждения о ракетном нападении, помимо надгоризонтных и загоризонтных РЛС в неё должен был входить и космический эшелон. Он позволял значительно расширить её возможности за счёт способности обнаруживать баллистические ракеты практически сразу после старта.

Головным разработчиком космического эшелона системы предупреждения был ЦНИИ «Комета», а за разработку космических аппаратов отвечало КБ им. Лавочкина.

К 1979 г. была развёрнута космическая система раннего обнаружения стартов МБР из четырёх космических аппаратов (КА) УС-К (система «Око») на высокоэллиптических орбитах. Для приёма, обработки информации и управления космическими аппаратами системы в Серпухове-15 (70 км от Москвы) был построен пункт управления СПРН. После проведения лётно-конструкторских испытаний система первого поколения УС-К была принята на вооружение в 1982. Она предназначалась для наблюдения за континентальными ракетоопасными районами США. Для уменьшения засветки фоновым излучением Земли, отражениями солнечного света от облаков и бликами спутники вели наблюдение не вертикально вниз, а под углом. Для этого апогеи высокоэллиптической орбиты были расположены над Атлантическим и Тихим океанами. Дополнительным преимуществом такой конфигурации была возможность наблюдать за районами базирования американских МБР на обоих суточных витках, поддерживая при этом прямую радиосвязь с командным пунктом под Москвой, либо с Дальним Востоком. Такая конфигурация обеспечивала условия для наблюдения примерно 6 часов в сутки для одного спутника. Чтобы обеспечить круглосуточное наблюдение, необходимо было иметь на орбите не менее четырёх КА одновременно. В действительности же, для обеспечения надёжности и достоверности наблюдений в состав группировки должны были входить девять спутников. Это позволяло иметь необходимый резерв на случай преждевременного выхода спутников из строя. К тому же, наблюдение велось одновременно двумя либо тремя КА, что снижало вероятность выдачи ложного сигнала от засветки регистрирующей аппаратуры прямым или отражённым от облаков солнечным светом. Такая конфигурация из 9 спутников была впервые создана в 1987 году.

В дополнение с 1984 на геостационарной орбите размещался один КА УС-КС (система «Око-С»). Он представлял собой тот же базовый спутник, несколько модифицированный для работы на геостационарной орбите.

Эти спутники помещались в точку стояния на 24° западной долготы, обеспечивая наблюдение за центральной частью территории США на краю видимого диска Земли. Спутники на геостационарной орбите обладают существенным преимуществом — они не изменяют свою позицию относительно Земли и могут обеспечить постоянную поддержку группировке спутников на высокоэллиптических орбитах.

Увеличение числа ракетоопасных районов потребовало обеспечить обнаружение стартов БР не только с континентальной территории США, но и из остальных районов земного шара. В связи с этим ЦНИИ «Комета» приступил к разработке системы второго поколения для обнаружения стартов БР с континентов, морей и океанов, которая являлась логическим продолжением системы «Око». Её отличительной особенностью, помимо размещения спутника на геостационарной орбите, стало применение вертикального наблюдения за стартом ракет на фоне земной поверхности. Такое решение позволяет не только регистрировать факт пуска ракет, но и определять азимут их полёта.

Развёртывание системы УС-КМО началось в феврале 1991 запуском первого космического аппарата второго поколения. В 1996 система УС-КМО («Око-1») с КА на геостационарной орбите была принята на вооружение.

Система предупреждения о ракетном нападении России

По состоянию на 23 октября 2007, орбитальная группировка СПРН состояла из трёх спутников — 1 УС-КМО на геостационарной орбите (Космос-2379 выведен на орбиту 24.08.2001) и 2 УС-КС на высоко эллиптической орбите (Космос-2422 выведен на орбиту 21.07.2006, [2] Космос-2430 выведен на орбиту 23.10.2007 [3] ). 27 июня 2008 года был запущен Космос-2440. [4]

Для обеспечения решения задач обнаружения стартов БР и доведения команд боевого управления СЯС (Стратегическим ядерным силам) предполагалось на базе систем УС-К и УС-КМО создание Единой космической системы (ЕКС).

На начало 2012 г. проводится плановое развёртывание радиолокационных станций высокой заводской готовности (РЛС ВЗГ) «Воронеж» с целью формирования замкнутого радиолокационного поля предупреждения о ракетном нападении на новом технологическом уровне с значительно улучшенными характеристиками и возможностями. На настоящий момент развёрнуты новые РЛС ВЗГ в Лехтуси (одна метровая), Армавире (две дециметровые), Светлогорске (дециметровая). С опережением графика идет строительство комплекса сдвоенной РЛС ВЗГ метрового диапазона в Иркутской области — первый сегмент юго-восточного направления поставлен на опытно-боевое дежурство, комплекс со вторым антенным полотном для обзора восточного направления планируется поставить на ОБД в 2013 году.

Работы по созданию единой космической системы (ЕКС) выходят на финишную прямую.

Станции СПРН России на территории Украины

В декабре 2005 президент Украины Виктор Ющенко сообщил о передаче США пакета предложений относительно сотрудничества в ракетно-космической сфере. После их оформления в соглашение американские специалисты получат доступ на объекты космической инфраструктуры, находящиеся в подчинении национального космического агентства Украины (НКАУ), включая две радиолокационные станции «Днепр» системы предупреждения о ракетном нападении (СПРН) в Севастополе и Мукачево, информация с которых передаётся на центральный командный пункт СПРН в Солнечногорске.

В отличие от арендуемых Россией и обслуживаемых российскими военнослужащими РЛС СПРН, расположенных в Азербайджане, Белоруссии и Казахстане, украинские РЛС с 1992 не только находятся в собственности Украины, но и обслуживались украинскими военными. На основании межгосударственного соглашения информация с этих РЛС, ведущих наблюдение за космическим пространством над Центральной и Южной Европой, а также Средиземноморьем, поступает на центральный командный пункт СПРН в Солнечногорске, подчинённый космическим войскам России. За это Украина ежегодно получала $1,2 млн.

В феврале 2005 министерство обороны Украины потребовало от России увеличить оплату, но Москва отказалась, напомнив, что соглашение 1992 года заключалось на 15 лет. Тогда в сентябре 2005 Украина начала процесс передачи РЛС в подчинение НКАУ, имея в виду переоформление соглашения в связи с изменением статуса РЛС. Россия не может воспрепятствовать доступу американских специалистов к РЛС. При этом России пришлось бы ускоренными темпами разворачивать на своей территории новые РЛС «Воронеж-ДМ», что она и сделала, поставив на дежурство узлы под краснодарским Армавиром и калининградским Светлогорском.

В марте 2006 министр обороны Украины Анатолий Гриценко заявил, что Украина не будет сдавать в аренду США две станции предупреждения о ракетном нападении в Мукачево и Севастополе.

В июне 2006 генеральный директор Национального космического агентства Украины (НКАУ) Юрий Алексеев сообщил, что Украина и Россия договорились об увеличении в 2006 году платы за обслуживание в интересах российской стороны РЛС в Севастополе и Мукачеве «в полтора раза».

В настоящее время Россия отказалась от использования станций в Севастополе и Мукачеве. Руководство Украины приняло решение разобрать обе станции в течение ближайших 3-4 лет [5] [6] [7] . Воинские части обслуживания станций уже расформированы.

Читать еще:  Схемы РПГ-22 «Нетто» - реактивная противотанковая граната

Система предупреждения о ракетном нападении России: состав и перспективы развития

15-я армия Воздушно-космических сил (особого назначения) включает Главный центр предупреждения о ракетном нападении, Главный центр разведки космической обстановки, Главный испытательный космический центр имени Г. С. Титова. Рассмотрим задачи и технические возможности наземного компонента этих сил.

ГЦ ПРН с главным командным пунктом в Солнечногорске организационно состоит из отдельных радиотехнических узлов (орту). Таких подразделений 17. На вооружении наземного эшелона ПРН имеются радары «Днепр», «Даугава», «Дарьял», «Волга», «Воронеж» и их модификации.

C 2005 года идет создание сети орту с радарами «Воронеж». В настоящее время находятся на боевом или опытно-боевом дежурстве 571 орту в Лехтуси Ленинградской области с радаром «Воронеж-М», «Воронеж-ДМ» в поселке Пионерский Калининградской области, Барнауле (Алтайский край) и Енисейске (Красноярский край). В Армавире (Краснодарский край) стоят две секции системы «Воронеж-ДМ» (818 орту), сектор обзора — 240 градусов, а в Усолье-Сибирском Иркутской области — две секции «Воронеж-М».

Строятся «Воронеж-М» в Орске (Оренбургская область), «Воронеж-ДМ» в Воркуте (Республика Коми) и Зее (Амурская область). В Оленегорске Мурманской области будет «Воронеж-ВП». Все указанные радары должны быть сданы в 2018 году, после чего над Россией будет сплошное радиолокационное поле ПРН. Надо отметить, что Советский Союз аналогичную задачу не реализовал.

Радар «Воронеж-ДМ» работает в дециметровом диапазоне радиоволн, «Воронеж-М» — в метровом. Дальность обнаружения целей — до шести тысяч километров. «Воронеж-ВП» — высокопотенциальный радар, работающий в метровом диапазоне.

Помимо «Воронежей» на вооружении стоят радары советской эпохи. В Оленегорске (57 орту) имеется «Днепр» как передающая часть для приема системой «Даугава». В 2014 году в состав ГЦ ПРН вернулся 808 орту в Севастополе также с «Днепром». Он, возможно, будет возвращен в работоспособное состояние с целью дополнительного создания радиолокационного поля на юго-западном направлении. Еще один «Днепр» имеется в Усолье-Сибирском.

За пределами Российской Федерации СПРН использует два радара. В Белоруссии вблизи Барановичей — «Волгу» дециметрового диапазона, около озера Балхаш в Казахстане — еще один «Днепр».

Последний из монстров советской эпохи «Дарьял» — в Печоре. Это самый мощный в мире радар метрового диапазона. Его планируют модернизировать, равно как и другие радары советской постройки, до плановой замены на РЛС ВЗГ.

В 2013 году началось развертывание радаров загоризонтного обнаружения (ЗГО) воздушных целей системы «Контейнер». Первым объектом с таким радаром стал 590 орту в Ковылкино (Мордовия). Создание узла будет полностью закончено в этом году. В настоящее время данный радар работает на Западном стратегическом направлении, планируется расширить его возможности на Южное. РЛС ЗГО системы «Контейнер» создается для работы на Восточном направлении в Зее в Амурской области. Окончание работ намечено на 2017 год. В будущем из таких РЛС будет сформировано кольцо, способное обнаруживать воздушные цели на расстоянии до трех тысяч километров. Узел загоризонтного обнаружения «Контейнер» предназначен для слежения за воздушной обстановкой, вскрытия характера деятельности авиационных средств в зоне ответственности в интересах информационного обеспечения органов военного управления, а также обнаружения пусков крылатых ракет.

ГЦ РКО с Центральным командным пунктом в Ногинске обеспечивает планирование, сбор и обработку информации от существующих и перспективных специализированных средств ККП. Среди основных задач — ведение единой информационной базы, иначе именуемой Главным каталогом космических объектов. В нем содержатся сведения о 1500 характеристиках каждого космического объекта (номер, признаки, координаты и др.). Россия способна видеть в космосе предметы диаметром 20 сантиметров. Всего в каталоге примерно 12 тысяч космических объектов. Радиооптический комплекс распознавания космических объектов «Крона», являющийся одним из основных средств ГЦ РКО, расположен в станице Зеленчукская на Северном Кавказе. Этот орту работает в радио- и оптическом диапазонах. Он способен распознать тип спутника и его принадлежность на высотах 3500-40 000 километров. Комплекс поставлен на дежурство в 2000 году и включает РЛС сантиметрового и дециметрового диапазонов и лазерно-оптический локатор. Радиооптический комплекс «Крона-Н», предназначенный для обнаружения низкоорбитальных КО, создается в районе города Находки в Приморском крае (573-й отдельный радиотехнический центр).

В Таджикистане вблизи города Нурека расположен 1109-й отдельный оптико-электронный узел, эксплуатирующий комплекс «Окно». Он поставлен на боевое дежурство в 2004-м и предназначен для обнаружения космических объектов в зоне обзора, определения параметров их движения, получения фотометрических характеристик и выдачи информации обо всем этом. В прошлом году закончена модернизация узла по проекту «Окно-М». Теперь комплекс позволяет обнаруживать, распознавать космические объекты и вычислять их орбиты в автоматическом режиме на высотах 2-40 000 километров. Низкоорбитальные летящие цели также не останутся незамеченными. Комплекс «Окно-С» создается в районе города Спасск-Дальнего в Приморском крае. В перспективах развития ГЦ РКО создание радиолокационного центра контроля космического пространства в Находке (ОКР «Находка»), развитие комплекса «Крона», создание сети мобильных оптических комплексов обзора и поиска «Прицел», РЛС обнаружения и контроля малоразмерных космических объектов «Развязка» на базе радара «Дунай-3У» в подмосковном Чехове. Для сети комплексов контроля радиоизлучающих космических аппаратов «Следопыт» создаются объекты в Московской и Калининградской областях, Алтайском и Приморском краях. Планируется ввести в эксплуатацию комплекс вычислительных средств четвертого поколения на замену ЭВМ «Эльбрус-2». В результате к 2018 году ГЦ РКО сможет наблюдать объекты размером менее 10 сантиметров.

Главный испытательный космический центр с командным пунктом в Краснознаменске решает задачи обеспечения управления орбитальными группировками КА военного, двойного, социально-экономического и научного назначения, в том числе системой ГЛОНАСС.

Ежесуточно дежурными силами ГИКЦ осуществляется около 900 сеансов управления спутниками. Центру подконтрольны порядка 80 процентов отечественных КА военного, двойного, социально-экономического и научного назначения. Для снабжения потребителей Минобороны России навигационно-временной, а при необходимости и прецизионной информацией от навигационной системы ГЛОНАСС создан прикладной потребительский центр.В 2014 году в состав Космических войск был возвращен центр дальней космической связи в Евпатории. Наиболее мощными и оснащенными являются 40 ОКИК в Евпатории и 15 ОКИК в Галенках (Приморский край). В Евпатории находится радиотелескоп РТ-70 с диаметром зеркала 70 метров и площадью антенны 2500 квадратных метров. Это один из самых больших полноподвижных радиотелескопов в мире.

На вооружении данного ОКИК имеется космический радиотехнический комплекс «Плутон», оснащенный тремя уникальными антеннами (две приемные и одна передающая). Они имеют эффективную поверхность около 1000 квадратных метров. Излучаемая передатчиком мощность радиосигнала достигает 120 киловатт, что позволяет осуществлять радиосвязь на дальности до 300 миллионов километров. От Украины данный ОКИК достался в крайне плохом техническом состоянии, но он будет оснащен новыми командно-измерительными системами управления и комплексами для контроля космического пространства.

В Галенках также есть радиотелескоп РТ-70.

ОКИК ГИКЦ (всего 14 узлов) размещены по всей территории страны, в частности в Красном Селе Ленинградской области, в Воркуте, Енисейске, Комсомольске-на-Амуре, Улан-Уде, на Камчатке.Работу и состав оборудования ОКИК можно оценить на примере Барнаульского узла. Своими радиотехническими средствами и лазерным телескопом он проводит до 110 сеансов управления космическими аппаратами в сутки. Отсюда поступает информация для контроля вывода на орбиты КА, запущенных с Байконура, обеспечивается голосовая и телевизионная связь с экипажами пилотируемых космических кораблей и МКС. В настоящее время здесь строится второй лазерный телескоп диаметром 312 сантиметров, массой 85 тонн. Планируется, что он будет крупнейшим в Евразии и на дальности 400 километров сможет различать конструктивные особенности деталей космических аппаратов размером восемь сантиметров.

В интересах ГИКЦ может использоваться корабль измерительного комплекса проекта 1914 «Маршал Крылов» — последний представитель кораблей КИК.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: